B.SC. THIRD SEMESTER (HONS.) EXAMINATION 2021

Subject: Mathematics
Course Title: Group theory-I
Full Marks: 40

Course ID: 32112

Course Code: SH/MTH/302/C-6

Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meanings.

1. Answer any five of the following questions:

a) If G is a group of order 22 , then prove that G contains an odd number of elements of order 2.
b) Let \mathbb{R}^{-}denote the set of all negative real numbers. Can you define a binary operation $*$ on \mathbb{R}^{-}so that $\left(\mathbb{R}^{-}, *\right)$ becomes a group? Justify your answer.
c) Express the following permutation as a product of disjoint cycles in S_{8} :

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
5 & 7 & 8 & 6 & 4 & 1 & 2 & 3
\end{array}\right)
$$

d) Prove that $Z(G)=\{a \in G \mid a g=g a$ for all $g \in G\}$ is a subgroup of the group G.
e) Find all the distinct left cosets of $H=6 \mathbb{Z}$ in the group $(\mathbb{Z},+)$.
f) Let A, B be two normal subgroups of a group G. Then $G / A \simeq G / B$-prove or disprove.
g) Give an example of an infinite group G such that each of its cyclic subgroups has cardinality maximum 2.
h) Show that \mathbb{Z}_{8} is not a homomorphic image of \mathbb{Z}_{15}.
2. Answer any four of the following questions:

$$
5 \times 4=20
$$

a) Prove that any non-identity permutation $\alpha \in S_{n}(n \geq 2)$ can be expressed as a product of disjoint cycles, where each cycle is of length ≥ 2.
b) Let S be a non-empty subset of a group G. Let $<S>$ denote the subgroup generated by S in G, i.e., the smallest subgroup containing S in G. Then prove that

$$
<S>=\left\{s_{1}^{e_{1}} s_{2}^{e_{2}} \ldots s_{n}^{e_{n}} \mid s_{i} \in S, e_{i}= \pm 1, i=1,2, \ldots, n ; n \in \mathbb{N}\right\}
$$

c) Define the normalizer of a subset of a group G. Show that it becomes a subgroup of G. If H is a subgroup of G, then prove that the normalizer of H is the largest subgroup of G in which H is normal. $1+1+3$
d) State and prove Cayley's theorem for groups.
e) For any two finite subgroups H, K of a group G, prove that $|H K|=\frac{|H||K|}{|H \cap K|}$.
f) Show that the set of all $8^{\text {th }}$ roots of unity form a cyclic group with respect to the multiplication of complex numbers. Also find all the generators of this group.
3. Answer any one of the following questions:
a) (i) Prove that any finitely generated subgroup of the group $(\mathbb{Q},+)$ is cyclic.
(ii) Prove Fermat's little theorem using Lagrange's theorem.
(iii) Let H be a proper subgroup of a group G and $a \in G \backslash H$. Suppose that for all $b \in G$, either $b \in H$ or $H a=H b$. Show that H is normal in G.
(iv) Using first isomorphism theorem on a group prove that $\mathbb{R} / \mathbb{Z} \cong S^{1}$, where S^{1} is a unit circle with center $(0,0)$ and radius 1.

$$
3+2+3+2
$$

b) (i) Give an example (with reason) of a non-cyclic, non-commutative group of which each subgroup is cyclic.
(ii) If H is the only subgroup of order m in a group G, then prove that H is normal in G.
(iii) In a group G, if $G / Z(G)$ is cyclic, then show that G is abelian.
(iv) State and prove third isomorphism theorem for groups.

